Experiments on a round turbulent buoyant plume

Author:

Shabbir Aamir,George William K.

Abstract

This paper reports a comprehensive set of hot-wire measurements of a round buoyant plume which was generated by forcing a jet of hot air vertically up into a quiescent environment. The boundary conditions of the experiment were measured, and are documented in the present paper in an attempt to sort out the contradictory mean flow results from the earlier studies. The ambient temperature was monitored to ensure that the facility was not stratified and that the experiment was conducted in a neutral environment. The axisymmetry of the flow was checked by using a planar array of sixteen thermocouples and the mean temperature measurements from these are used to supplement the hot-wire measurements. The source flow conditions were measured to ascertain the rate at which the buoyancy was added to the flow. The measurements conserve buoyancy within 10%. The results are used to determine balances of the mean energy and momentum differential equations. In the mean energy equation it is found that the vertical advection of energy is primarily balanced by the radial turbulent transport. In the mean momentum equation the vertical advection of momentum and the buoyancy force balance the radial turbulent transport. The buoyancy force is the second largest term in this balance and is responsible for the wider (and higher) velocity profiles in plumes as compared to jets. Budgets of the temperature variance and turbulent kinetic energy are also determined in which thermal and mechanical dissipation rates are obtained as the closing terms. Similarities and differences between the two balances are discussed. It is found that even though the direct effect of buoyancy in turbulence, as evidenced by the buoyancy production term, is substantial, most of the turbulence is produced by shear. This is in contrast to the mean velocity field where the effect of the buoyancy force is quite strong. Therefore, it is concluded that in a buoyant plume the primary effect of buoyancy on turbulence is indirect, and enters through the mean velocity field (giving larger shear production).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference34 articles.

1. Ogino, F. , Takeuchi, H. , Kudo, I. & Mizushina, T. 1980 Heated jets discharged vertically into ambients of uniform and linear temperatures profiles.Intl J. Heat Mass Transfer 23,1581–1588.

2. George, W. K. 1990 Governing equations, experiments, and the experimentalist.Exp. Thermal Fluid Sci. 3,557–566.

3. Papantoniou, D. & List, E. J. 1989 Large scale structure in the far field buoyant jets.J. Fluid Mech. 209,151–190.

4. Papanicolaou, P. N. & List, E. J. 1987 Statistical and spectral properties of tracer concentration in round buoyant jets.Intl J. Heat Mass Transfer 30,2059–2071.

5. Zel'dovich , Ya, B. 1937 Limiting laws for turbulent flows in free convection.Zh. Eksp. Theoret. Fiz 7,1463.

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3