An experiment on two aspects of the interaction between strain and vorticity

Author:

ANDREOTTI BRUNO,DOUADY STÉPHANE,COUDER YVES

Abstract

Presented here are two results concerning the interaction between vorticity and strain. Both are obtained experimentally by investigating the hyperbolic flow created in Taylor's four-roll mill. It is first shown that this pure straining flow becomes intrinsically unstable through a supercritical bifurcation to form an array of counter-rotating vortices aligned in the stretching direction. The dimensionless parameter characterizing the flow is the internal Reynolds number Re = γΔ2/v based on the velocity gradient γ and on the gap between the rollers Δ, and the threshold value is Rec = 17. Near the threshold, the transverse velocity profiles of these vortices are in excellent agreement with those predicted by the theory of Kerr & Dold (1994) in the case of an infinite hyperbolic flow. A second result is obtained at high Reynolds number. Measurements of the velocity profile in the direction parallel to the vortices show that the velocity gradient (the stretching) is systematically weaker inside the vortices than elsewhere. This demonstrates experimentally the existence of a negative feedback of rotation on stretching. This effect is ascribed to the two-dimensionalization due to the vortex fast rotation. An implication of these results for turbulent flows is a nonlinear limitation of the vorticity stretching, an effect characterized recently by Ohkitani 1998.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3