Axisymmetric slow viscous flow past an arbitrary convex body of revolution

Author:

Gluckman Michael J.,Weinbaum Sheldon,Pfeffer Robert

Abstract

Considerable advances have been made in the past few years in treating a variety of problems in slender-body Stokes flow (Taylor 1969; Batchelor 1970; Cox 1970, 1971; Tillett 1970). However, the problem of treating the creeping motion past bluff objects, whose boundaries do not conform to a constant co-ordinate surface of one of the special orthogonal co-ordinate systems for which the Stokes slow-flow equation is simply separable, is still largely unsolved. In the slender-body Stokes flow studies mentioned above, the viscous-flow boundary-value problem is formulated approximately as an integral equation for an unknown distribution of Stokeslets over a line enclosed by the body. The theory is valid for only very extended shapes, since the error in drag decays inversely as the logarithm of the aspect ratio of the object. By contrast, the present authors show that the boundary-value problem for the axisymmetric flow past an arbitrary convex body of revolution can be formulated exactly as an integral equation for an unknown distribution of ring-like singularities over the surface of the body. The kernel in this integral equation is closely related to the fundamental separable solutions of the Stokes slow-flow equation when written in an oblate spheroidal co-ordinate system of vanishing aspect ratio. The two lowest-order appropriate spheroidal singularities are found to provide a complete description for all surface elements, except those perpendicular to the axis. Higher-order singularities of all orders are required to describe axially perpendicular surfaces, such as the ends of a cylinder or the blunt base of an object. The newly derived integral equation is solved numerically to provide the first theoretical solutions for low aspect ratio cylinders and cones. The theoretically predicted drag results are in excellent agreement with experimentally measured values.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference26 articles.

1. Tuck, E. O. 1968 Towards the calculation and minimization of Stokes drag on bodies of arbitrary shape. 3rd Australasian Conf. on Hydraulics and Fluid Mechanics ,Sydney, preprint no. 2584,pp.25–29.

2. Taylor, G. I. 1969 Problems of Hydrodynamics and Continuous Mechanics .S.I.A.M. Publications,p.718.

3. Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics .Prentice-Hall.

4. Faxen, H. 1925 Arkiv. Mat. Astron. Fys. 19A, no. 13. (Appendix by Dahl.)

5. Praeger, W. 1928 Phys. Z. 29,865.

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3