Nonlinear interactions between convection, rotation and flows with vertical shear

Author:

Hathaway David H.,Somerville Richard C. J.

Abstract

A three-dimensional and time-dependent numerical model is used to study the nonlinear interactions between thermal convective motions, rotation, and imposed flows with vertical shear. All cases have Rayleigh numbers of 104 and Prandtl numbers of 1.0. Rotating cases have Taylor numbers of 104.For the non-rotating cases, the effects of the shear on the convection produce longitudinal rolls aligned with the shear flow and a downgradient flux of momentum. The interaction between the convection and the shear flow decreases the shear in the interior of the fluid layer while adding kinetic energy to the convective motions. For unit Prandtl number the dimensionless flux of momentum is equal to the dimensionless flux of heat.For rotating cases with vertical rotation vectors, the shear flow favours rolls aligned with the shear and produces a downgradient flux of momentum. However, the Coriolis force turns the flow induced by the convection to produce a more complicated shear that changes direction with height. As in the non-rotating cases, the convective motions become more energetic by extracting energy from the mean flow. For Richardson numbers larger than about − 1.0, the dominant source of eddy kinetic energy is the shear flow rather than buoyancy.For rotating cases with tilted rotation vectors the results depend upon the direction of the shear. For weak shear, convective rolls aligned with the rotation vector are favoured. When the shear flow is directed to the east along the top, the rolls become broader and the convection weaker. For large shear in this direction, the convective motions are quenched by the competition between the shear flow and the tilted rotation vector. When the shear flow is directed to the west along the top, strong shear produces rolls aligned with the shear. The heat and momentum fluxes become large and can exceed those found in the absence of a tilted rotation vector. Countergradient fluxes of momentum can also be produced.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Busse, F. H. 1983 Generation of mean flows by thermal convection.Physica 9D,287–299.

2. Clever, R. M. & Busse, F. H. 1977 Instabilities of longitudinal convection rolls in an inclined layer.J. Fluid Mech. 81,107–127.

3. Deardorff, J. W. 1965 Gravitational instability between horizontal plates with shear.Phys. Fluids 8,1027–1030.

4. Lipps, F. B. 1971 Two-dimensional numerical experiments in thermal convection with vertical shear.J. Atmos. Sci. 28,3–19.

5. Agee, E. M. 1984 Observations from space and thermal convection: a historical perspective.Bull. Am. Met. Soc. 65,938–949.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3