Effect of compressibility on the global stability of axisymmetric wake flows

Author:

MELIGA P.,SIPP D.,CHOMAZ J.-M.

Abstract

We study the linear dynamics of global eigenmodes in compressible axisymmetric wake flows, up to the high subsonic regime. We consider both an afterbody flow at zero angle of attack and a sphere, and find that the sequence of bifurcations destabilizing the axisymmetric steady flow is independent of the Mach number and reminiscent of that documented in the incompressible wake past a sphere and a disk (Natarajan & Acrivos, J. Fluid Mech., vol. 254, 1993, p. 323), hence suggesting that the onset of unsteadiness in this class of flows results from a global instability. We determine the boundary separating the stable and unstable domains in the (M, Re) plane, and show that an increase in the Mach number yields a stabilization of the afterbody flow, but a destabilization of the sphere flow. These compressible effects are further investigated by means of adjoint-based sensitivity analyses relying on the computation of gradients or sensitivity functions. Using this theoretical formalism, we show that they do not act through specific compressibility effects at the disturbance level but mainly through implicit base flow modifications, an effect that had not been taken into consideration by previous studies based on prescribed parallel base flow profiles. We propose a physical interpretation for the observed compressible effects, based on the competition between advection and production of disturbances, and provide evidence linking the stabilizing/destabilizing effect observed when varying the Mach number to a strengthening/weakening of the disturbance advection mechanism. We show, in particular, that the destabilizing effect of compressibility observed in the case of the sphere results from a significant increase of the backflow velocity in the whole recirculating bubble, which opposes the downstream advection of disturbances.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3