Pressure pulses generated by the interaction of a discrete vortex with an edge

Author:

Panaras Argyris G.

Abstract

A central role in the mechanism of the self-sustained oscillations of the flow about cavity-type bodies is played by the reattachment edge. Experimentally it has been found that periodic pressure pulses generated on this edge are fed back to the origin of the shear layer and cause the production of discrete vortices. The oscillations have been found to be suppressed or attenuated when the edge has the shape of a ramp of small angle, or when it is properly rounded. To clarify the role of the shape of the reattachment edge in the mechanism of the oscillations, a mathematical model is developed for the vortex–edge interaction. In this model the interaction of one discrete vortex, imbedded within a constant-speed parallel flow, with the reattachment edge is studied. Two typical shapes of the reattachment edge are examined; a ramp of variable angle and an ellipse. The main conclusion of the present analysis is the strong dependence of the pressure pulses, that are induced on the surface of the edge, on the specific shape of the edge. The pressure pulses on reattachment edges with shapes that give rise to steady flows have been found to be of insignificant amplitude. On the other hand, when the reattachment edge has a shape that is known to result in oscillating flow, the induced pressure pulses are of very large amplitude. Intermediate values of the pressure are found for configurations known to stabilize partially the flow. The present results indicate that, for the establishment of the oscillation, the feedback force generated by the vortex–edge interaction must have an appropriate value. The feedback force may be eliminated if the shape of the lip of the edge is properly designed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference28 articles.

1. Saffman, R. G. & Baker, G. R. 1979 Vortex interactions.Ann. Rev. Fluid Mech 11,95–122.

2. Rockwell, D. & Naudascher, F. 1979 Self-sustained oscillations of impinging free shear layers.Ann. Rev. Fluid Mech. 11,67–94.

3. Chandrsuda, C. , Mehta, R. D. , Weir, A. D. & Bradshaw, P. 1978 Effect of free-stream turbulence on large structure in turbulent mixing layers.J. Fluid Mech.85,693–704.

4. Rossiter, J. E. 1964 Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. RAE Rep. and Memoranda No. 3438.

5. Roshko, A. 1976 Structure of turbulent shear flows: a new look.AIAA J. 14,1349–1357.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3