Field-induced motion of ferrofluid droplets through immiscible viscous media

Author:

AFKHAMI S.,RENARDY Y.,RENARDY M.,RIFFLE J. S.,St PIERRE T.

Abstract

The motion of a hydrophobic ferrofluid droplet placed in a viscous medium and driven by an externally applied magnetic field is investigated numerically in an axisymmetric geometry. Initially, the drop is spherical and placed at a distance away from the magnet. The governing equations are the Maxwell equations for a non-conducting flow, momentum equation and incompressibility. A numerical algorithm is derived to model the interface between a magnetized fluid and a non-magnetic fluid via a volume-of-fluid framework. A continuum-surface-force formulation is used to model the interfacial tension force as a body force, and the placement of the liquids is tracked by a volume fraction function. Three cases are studied. First, where inertia is dominant, the magnetic Laplace number is varied while the Laplace number is fixed. Secondly, where inertial effects are negligible, the Laplace number is varied while the magnetic Laplace number is fixed. In the third case, the magnetic Bond number and inertial effects are both small, and the magnetic force is of the order of the viscous drag force. The time taken by the droplet to travel through the medium and the deformations in the drop are investigated and compared with a previous experimental study and accompanying simpler model. The transit times are found to compare more favourably than with the simpler model.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference19 articles.

1. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation

2. Numerical treatment of free surface problems in ferrohydrodynamics;Lavrova;J. Phys.: Condens. Matter,2006

3. Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method

4. Clift R. , Grace J. R. & Weber M. E. 1978 Bubbles, Drops, and Particles. Academic.

5. A continuum method for modeling surface tension

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3