Numerical and experimental investigations of oblique boundary layer transition

Author:

BERLIN STELLAN,WIEGEL MARKUS,HENNINGSON DAN S.

Abstract

A transition scenario initiated by two oblique waves is studied in an incompressible boundary layer. Hot-wire measurements and flow visualizations from the first boundary layer experiment on this scenario are reported. The experimental results are compared with spatial direct numerical simulations and good qualitative agreement is found. Also, quantitative agreement is found when the experimental device for disturbance generation is closely modelled in the simulations and pressure gradient effects taken into account. The oblique waves are found to interact nonlinearly to force streamwise vortices. The vortices in turn produce growing streamwise streaks by non-modal linear growth mechanisms. This has previously been observed in channel flows and calculations of both compressible and incompressible boundary layers. The flow structures observed at the late stage of oblique transition have many similarities to the corresponding ones of K- and H-type transition, for which two-dimensional Tollmien–Schlichting waves are the starting point. However, two-dimensional Tollmien–Schlichting waves are usually not initiated or observed in oblique transition and consequently the similarities are due to the oblique waves and streamwise streaks appearing in all three scenarios.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3