Author:
FOESSEL É.,WALTER J.,SALSAC A.-V.,BARTHÈS-BIESEL D.
Abstract
The motion and deformation of a spherical elastic capsule freely suspended in a simple shear flow is studied numerically, focusing on the effect of the internal-to-external viscosity ratio. The three-dimensional fluid–structure interactions are modelled coupling a boundary integral method (for the internal and external fluid motion) with a finite element method (for the membrane deformation). For low viscosity ratios, the internal viscosity affect the capsule deformation. Conversely, for large viscosity ratios, the slowing effect of the internal motion lowers the overall capsule deformation; the deformation is asymptotically independent of the flow strength and membrane behaviour. An important result is that increasing the internal viscosity leads to membrane compression and possibly buckling. Above a critical value of the viscosity ratio, compression zones are found on the capsule membrane for all flow strengths. This shows that very viscous capsules tend to buckle easily.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献