A visual study of turbulent shear flow

Author:

Nychas Stavros G.,Hershey Harry C.,Brodkey Robert S.

Abstract

The outer region of a turbulent boundary layer along a flat plate was photographed and analysed; in addition, limited observations of the wall area were also made. The technique involved suspending very small solid particles in water and photographing their motion with a high-speed camera moving with the flow.The single most important event observed in the outer region was fluid motion which in the convected view of the travelling camera appeared as a transverse vortex. This was a large-scale motion transported downstream almost parallel to the wall with an average velocity slightly smaller than the local mean. It appeared to be the result of an instability interaction between accelerated and decelerated fluid, and it is believed to be closely associated with the wall-region ejections. The transverse vortex was part of a deterministic sequence of events; although these events occurred randomly in space and time. The first of these events was a decelerated flow exhibiting velocities considerably smaller than the local mean. It was immediately followed by an accelerated flow. Both these events extended from near the wall to the far outer region. Their interaction resulted in the formation of one or more transverse vortices. While the transverse vortex was transported downstream, small-scale fluid elements, originating in the wall area of the decelerated flow, were ejected outwards (ejection event). After travelling some distance outwards the ejected elements interacted with the oncoming accelerated fluid in the wall region and were subsequently swept downstream (sweep event). The sequence of events closed with two large-scale motions.Estimated positive and negative contributions to the instantaneous Reynolds stress during the events were many times higher than the local mean values.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Wills, J. A. B. 1970 J. Fluid Mech. 45,65.

2. Schraub, F. A. & Kline, S. J. 1965 A study of the structure of the turbulent boundary layer with and without longitudinal pressure gradients.Dept. Mech. Engng, Stanford University Rep. MD-12.

3. Grass, A. J. 1971 J. Fluid Mech. 50,233.

4. Kline, S. J. , Reynolds, W. C. , Schraub, F. A. & Runstadler, P. W. 1967 J. Fluid Mech. 30,741.

5. Willmarth, W. W. & Lu, S. S. 1972 J. Fluid Mech. 55,65.

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3