Miscible porous media displacements driven by non-vertical injection wells

Author:

UPCHURCH E.,MEIBURG E.

Abstract

High-resolution simulations are employed to identify and analyse the mechanisms dominating miscible porous media displacements generated by inclined injection wells. Compared to vertical injection wells, significant differences are observed that strongly influence breakthrough times and recovery rates. Constant density and viscosity displacements, for which the velocity field is potential in nature, demonstrate the existence of pronounced flow non-uniformities, due to the interaction of the inclined well with the reservoir boundaries. These non-uniformities deform the fronts during the initial displacement stages.In the presence of a viscosity difference, the non-uniformities of the potential flow field result in a focusing of the fingering instability. If the fluids also have different densities, a gravity tongue will reinforce the dominant finger along one front, while a gravitational instability leads to the disintegration of the dominant finger along the other front. Hence, the two fronts emerging from the inclined injection well usually evolve very differently from each other for variable density and viscosity displacements.For inclined injection wells and sufficiently large mobility ratios, gravity tongues are seen to evolve dendritically for an intermediate range of density contrasts. While mild gravitational forces are necessary to create the gravity tongue in the first place, large density differences will suppress the growth of the dendritic side branches. Since the dendritic branches appear along the side of the gravity tongue that should be stable according to traditional stability criteria, it can be concluded that the tip region plays a crucial role in their formation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3