On the far wake and induced drag of aircraft

Author:

SPALART PHILIPPE R.

Abstract

A set of matched asymptotic expansions is proposed for the flow far behind an aircraft, with the primary purpose of identifying lift, thrust and drag, particularly induced drag, in a unified manner in integral statements of the momentum equation. The fluid in the far wake is inviscid and incompressible, and variations of total pressure are allowed, as are vortex sheets. A notable feature is that the Trefftz-plane approximation is not invoked; instead the wake is taken as fully rolled-up, and the analysis proceeds without the assumption of light loading. Attention is paid to the absolute convergence of integrals over infinite domains and handling of discontinuities. The expansion includes a sink term, which appears new, so that the mass flux through a transverse plane is non-zero, as is the flux of mechanical energy. The lift can be formally attributed to the velocity induced by the bound vortex of the wing, which is at odds with some treatments, although consistent with Prandtl's analysis over a ground plane. The drag contains the integral of ρ(v2 + w2u2)/2, as in many treatments of the subject, u being the perturbation velocity along the wake. The negative sign for u2 appears paradoxical on two counts, one of which is resolved here. First, its very presence instead of the + sign, which would lead to the perturbation kinetic energy and therefore a compelling explanation of induced drag, is explained by the longitudinal energy flux. This energy, the integral of ρu2, is continuously provided by the unsteady starting-vortex system and was deposited earlier by the aircraft. Second, it appears that negative drag could be predicted by this equation. This is shown to be impossible, because of inequalities between the integrals of (v2 + w2) and of u2, but the proof is valid only if the vorticity is of only one sign on each side. A general proof of positivity has not been derived, because of nonlinearities, but neither has a counter-example.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference14 articles.

1. AIRPLANE TRAILING VORTICES

2. On the motion of laminar wing wakes in a stratified fluid

3. Progress towards a method for the measurement of the components of the drag of a wing of finite span;Maskell;R. Aircraft Est. Tech. Rep.,1972

4. DRAG DUE TO LIFT: Concepts for Prediction and Reduction

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the spurious effects in Lamb-vector-based force decomposition methods;Aerospace Science and Technology;2023-11

2. Energy-Based Aerodynamic Loss and Recovery Characteristics of Adiabatic and Heated Fuselages;Journal of Aircraft;2023-11

3. Advancements and prospects of boundary layer ingestion propulsion concepts;Progress in Aerospace Sciences;2023-04

4. Wave Drag and Vorticity in Two-Dimensional Viscous and Inviscid Flows;AIAA SCITECH 2023 Forum;2023-01-19

5. Drag decomposition of a subsonic wing via a far-field, exergy-based method;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3