Stability of multiple steady states of convection in laterally heated cavities

Author:

GELFGAT A. YU.,BAR-YOSEPH P. Z.,YARIN A. L.

Abstract

A parametric study of multiple steady states, their stability, onset of oscillatory instability, and some supercritical unsteady regimes of convective flow of a Boussinesq fluid in laterally heated rectangular cavities is presented. Cavities with four no-slip boundaries, isothermal vertical and perfectly insulated horizontal boundaries are considered. Four distinct branches of steady-state flows are found for this configuration. A complete study of stability of each branch is performed for the aspect ratio A (length/height) of the cavity varying continuously from 1 to 11 and for two fixed values of the Prandtl number: Pr = 0 and Pr = 0.015. The results are represented as stability diagrams showing the critical parameters (critical Grashof number and the frequency at the onset of the oscillatory instability) corresponding to transitions from steady to oscillatory states, appearance of multi-roll states, merging of multiple states and backwards transitions from multi-roll to single-roll states. For better comparison with the existing experimental data, an additional stability study for varying Prandtl number (0.015 [les ] Pr [les ] 0.03) and fixed value of the aspect ratio A = 4 was carried out. It was shown that the dependence of the critical Grashof number on the aspect ratio and the Prandtl number is very complicated and a very detailed parametric study is required to reproduce it correctly. Comparison with the available experimental data for A = 4 shows that the results of a two-dimensional stability analysis are in good agreement with the experimental results if the width ratio (width/height) of the experimental container is sufficiently large. The study is carried out numerically with the use of two independent numerical approaches based on the global Galerkin and finite-volume methods.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3