The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid

Author:

Lawrence C. J.,Weinbaum S.

Abstract

In a recent paper by Lawrence & Weinbaum (1986) an unexpected new behaviour was discovered for a nearly spherical body executing harmonic oscillations in unsteady Stokes flow. The force was not a simple quadratic function in half-integer powers of the frequency parameter λ2 = −ia2ω/ν, as in the classical solution of Stokes (1851) for a sphere, and the force for an arbitrary velocity U(t) contained a new memory integral whose kernel differed from the classical t−½ behaviour derived by Basset (1888) for a sphere. A more general analysis of the unsteady Stokes equations is presented herein for the axisymmetric flow past a spheroidal body to elucidate the behaviour of the force at arbitrary aspect ratio. Perturbation solutions in the frequency parameter λ are first obtained for a spheroid in the limit of low- and high-frequency oscillations. These solutions show that in contrast to a sphere the first order corrections for the component of the drag force that is proportional to the first power of λ exhibit a different behaviour in the extreme cases of the steady Stokes flow and inviscid limits. Exact solutions are presented for the middle frequency range in terms of spheroidal wave functions and these results are interpreted in terms of the analytic solutions for the asymptotic behaviour. It is shown that the force on a body can be represented in terms of four contributions; the classical Stokes and virtual mass forces; a newly defined generalized Basset force proportional to λ whose coefficient is a function of body geometry derived from the perturbation solution for high frequency; and a fourth term which combines frequency and geometry in a more general way. In view of the complexity of this fourth term, a relatively simple correlation is proposed which provides good accuracy for all aspect ratios in the range 0.1 < b/a < 10 where exact solutions were calculated and for all values of λ. Furthermore, the correlation has a simple inverse Laplace transform, so that the force may be found for an arbitrary velocity U(t) of the spheroid. The new fourth term transforms to a memory integral whose kernel is either bounded or has a weaker singularity than the t−½ behaviour of the Basset memory integral. These results are used to propose an approximate functional form for the force on an arbitrary body in unsteady motion at low Reynolds number.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference33 articles.

1. Lai, R. Y. S. 1973 Translatory acceleration of a circular disk in a viscous fluid.Appl. Sci. Res. 27,441.

2. Hasimoto, H. 1955 Rayleigh's problem for a cylinder of arbitrary shape.J. Phys. Soc. Japan 9,611.

3. Batchelor, G. K. 1954 The skin friction on infinite cylinders moving parallel to their length.Q. J. Mech. Appl. Maths 7,179.

4. Hocquart, R. 1977b Movement brownien de rotation d'un ellipsoïde de révolution. Rotation autour de l'axe.C. R. Acad. Sci. Paris A284,1421.

5. Aoi, T. 1955b On spheroidal functions.J. Phys. Soc. Japan 10,130.

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3