Nonmineralized triradial conulariids from the lowermost Cambrian Stage 2 of the Olenek Uplift, Siberian Platform

Author:

Sarsembaev Zhiger A.ORCID,Marusin Vasiliy V.ORCID

Abstract

AbstractIn the early Cambrian fossil record, triradial symmetry is typical for anabaritids and occurs among carinachitids. The former are an extinct group of minute benthic cnidarians covered with a calcareous tubular exoskeleton. The origin of the anabaritids is poorly understood, but previously reported triradial pyramid-shaped steinkerns and molds of the oldest conulariids, Vendoconularia, from the upper Ediacaran of the White Sea region suggested the anabaritids were closely related to conulariids. However, triradial symmetry could originate independently in different lineages in the late Ediacaran and early Cambrian. Herein we describe a new taxon, Ilankirus kessyusensis new genus new species, from the base of the Cambrian Stage 2 of the Olenek Uplift (Siberian Platform). These fossils occur as ornamented steinkerns in the shape of trilateral pyramids and lack any relics of a mineralized exoskeleton. Abundant plastic deformations and fractures of the casts suggest the organism was weakly if at all mineralized. The steinkerns are encrusted with a thin patina of iron-rich chlorite (chamosite) formed because of a multistage diagenetic replacement of authigenic glauconite (glauconite–berthierine–chamosite) under reducing conditions of oxygen-depauperate pore- and seawater. Both lacking two major autapomorphies of the crown-group conulariids (mineralized periderm and quadrate cross section of the oral region of the periderm), the late Ediacaran triradial Vendoconularia and Terreneuvian Ilankirus represent stem-group conulariids.UUID: http://zoobank.org/a2ce04fa-36a5-485a-806c-f13f4749fc7f

Funder

Russian Science Foundation

Russian Foundation for Basic Research

Publisher

Cambridge University Press (CUP)

Subject

Paleontology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3