Arquile Varieties – Varieties Consisting of Power Series in a Single Variable

Author:

Hauser HerwigORCID,Woblistin Sebastian

Abstract

Abstract Spaces of power series solutions $y(\mathrm {t})$ in one variable $\mathrm {t}$ of systems of polynomial, algebraic, analytic or formal equations $f(\mathrm {t},\mathrm {y})=0$ can be viewed as ‘infinite-dimensional’ varieties over the ground field $\mathbf {k}$ as well as ‘finite-dimensional’ schemes over the power series ring $\mathbf {k}[[\mathrm {t}]]$ . We propose to call these solution spaces arquile varieties, as an enhancement of the concept of arc spaces. It will be proven that arquile varieties admit a natural stratification ${\mathcal Y}=\bigsqcup {\mathcal Y}_d$ , $d\in {\mathbb N}$ , such that each stratum ${\mathcal Y}_d$ is isomorphic to a Cartesian product ${\mathcal Z}_d\times \mathbb A^{\infty }_{\mathbf {k}}$ of a finite-dimensional, possibly singular variety ${\mathcal Z}_d$ over $\mathbf {k}$ with an affine space $\mathbb A^{\infty }_{\mathbf {k}}$ of infinite dimension. This shows that the singularities of the solution space of $f(\mathrm {t},\mathrm {y})=0$ are confined, up to the stratification, to the finite-dimensional part. Our results are established simultaneously for algebraic, convergent and formal power series, as well as convergent power series with prescribed radius of convergence. The key technical tool is a linearisation theorem, already used implicitly by Greenberg and Artin, showing that analytic maps between power series spaces can be essentially linearised by automorphisms of the source space. Instead of stratifying arquile varieties, one may alternatively consider formal neighbourhoods of their regular points and reprove with similar methods the Grinberg–Kazhdan–Drinfeld factorisation theorem for arc spaces in the classical setting and in the more general setting.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Reference40 articles.

1. Gabrielov's rank condition is equivalent to an inequality of reduced orders

2. Versal deformations of formal arcs

3. Germs of arcs on singular algebraic varieties and motivic integration

4. Sur la construction de la déformation semi-universelle d’un germe d’espace analytique;Hauser;Ann. Scient. E.N.S.,1985

5. Note on a theorem of M;Płoski;Artin. Bull. Acad. Polon. Sci.,1974

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Embedding codimension of the space of arcs;Forum of Mathematics, Pi;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3