p-Adic estimates of abelian Artin L-functions on curves
-
Published:2022
Issue:
Volume:10
Page:
-
ISSN:2050-5094
-
Container-title:Forum of Mathematics, Sigma
-
language:en
-
Short-container-title:Forum of Mathematics, Sigma
Author:
Kramer-Miller Joe
Abstract
Abstract
The purpose of this article is to prove a ‘Newton over Hodge’ result for finite characters on curves. Let X be a smooth proper curve over a finite field
$\mathbb {F}_q$
of characteristic
$p\geq 3$
and let
$V \subset X$
be an affine curve. Consider a nontrivial finite character
$\rho :\pi _1^{et}(V) \to \mathbb {C}^{\times }$
. In this article, we prove a lower bound on the Newton polygon of the L-function
$L(\rho ,s)$
. The estimate depends on monodromy invariants of
$\rho $
: the Swan conductor and the local exponents. Under certain nondegeneracy assumptions, this lower bound agrees with the irregular Hodge filtration introduced by Deligne. In particular, our result further demonstrates Deligne’s prediction that the irregular Hodge filtration would force p-adic bounds on L-functions. As a corollary, we obtain estimates on the Newton polygon of a curve with a cyclic action in terms of monodromy invariants.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Reference31 articles.
1. Twisted exponential sums and Newton polyhedra;Adolphson;J. Reine Angew. Math.,1993
2. Formal Cohomology: III. Fixed Point Theorems
3. [26] The Stacks Project Authors, ‘Stacks project’ (2018). URL: https://stacks.math.columbia.edu.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献