A homotopy exact sequence for overconvergent isocrystals
-
Published:2021
Issue:
Volume:9
Page:
-
ISSN:2050-5094
-
Container-title:Forum of Mathematics, Sigma
-
language:en
-
Short-container-title:Forum of Mathematics, Sigma
Author:
Lazda Christopher,Pál Ambrus
Abstract
Abstract
In this article we prove exactness of the homotopy sequence of overconvergent fundamental groups for a smooth and projective morphism in characteristic p. We do so by first proving a corresponding result for rigid analytic varieties in characteristic
$0$
, following dos Santos [dS15] in the algebraic case. In characteristic p, we then proceed by a series of reductions to the case of a liftable family of curves, where we can apply the rigid analytic result. We then use this to deduce a Lefschetz hyperplane theorem for convergent fundamental groups, as well as a comparison theorem with the étale fundamental group.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Reference35 articles.
1. Semistable reduction for overconvergent $F$-isocrystals I: Unipotence and logarithmic extensions
2. [Ber96a] Berthelot, P. , ‘Cohomologie rigide et cohomologie rigide à supports propres, première partie’, Preprint (1996), http://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf.
3. Smoothness, semi-stability and alterations
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献