Author:
Castella Francesc,Hsieh Ming-Lun
Abstract
AbstractLet$E/\mathbf {Q}$be an elliptic curve and$p>3$be a good ordinary prime forEand assume that$L(E,1)=0$with root number$+1$(so$\text {ord}_{s=1}L(E,s)\geqslant 2$). A construction of Darmon–Rotger attaches toEand an auxiliary weight 1 cuspidal eigenformgsuch that$L(E,\text {ad}^{0}(g),1)\neq 0$, a Selmer class$\kappa _{p}\in \text {Sel}(\mathbf {Q},V_{p}E)$, and they conjectured the equivalence$$ \begin{align*} \kappa_{p}\neq 0\quad\Longleftrightarrow\quad{\textrm{dim}}_{{\mathbf{Q}}_{p}}\textrm{Sel}(\mathbf{Q},V_{p}E)=2. \end{align*} $$In this article, we prove the first cases on Darmon–Rotger’s conjecture when the auxiliary eigenformghas complex multiplication. In particular, this provides a new construction of nontrivial Selmer classes for elliptic curves of rank 2.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献