Mechanisms of oxygen activation during plant stress

Author:

Elstner Erich F.,Osswald Wolfgang

Abstract

SynopsisGreen plants, within certain limitations, can adapt to a wide variety of unfavourable conditions such as drought, temperature changes, light variations, infectious attacks, air pollution and soil contamination. Depending on the strength of the individual impact(s), fluent or abrupt changes in visible or measurable stress symptoms indicate the deviation from normal metabolic conditions. Most of the visible or measurable symptoms are connected with altered oxygen metabolism principally concerning the transition from mostly heterolytic (two-electron transition) to increased homolytic (one-electron transition) processes. Homolytic reactions within metabolic sequences create, however, free radicals and have to be counteracted by the increase in radical-scavenging processes or compounds, thus warranting reaction sequences under metabolic control. At later states of stress episodes, the above control is gradually lost and more or less chaotic radical processes take over. Finally, cellular decompartmentalisations induce lytic and necrotic processes which are visible as the collapse of darkening cells or tissues. Every episode during this process is governed by a more or less denned balance between pro- and antioxidative capacities, including photosynthetic (strongly under metabolic and oxygen-detoxifying control) and photodynamic (only controlled by scavenger- and/or quencher-availability) reactions. This (theoretical) sequence of events in most cases can only be characterised punctually by strongly defined (analytical) indicator reactions (ESR) and is certainly species- and organ-specific.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3