Evolution of the mammary capillary network and carbonic anhydrase activity throughout lactation and during somatotropin treatment in goats

Author:

Nielsen Mette O,Cvek Katarina,Dahlborn Kristina

Abstract

During the normal course of lactation, mammary metabolic activity and blood flow are closely correlated. Six lactating goats were used in this experiment to test the hypothesis that the capillary network and the capillary enzyme, carbonic anhydrase (CA; EC 4.2.1.1) are important regulatory factors involved in the coordination of mammary blood flow (MBF) and metabolic activity. Milk vein blood velocity was determined as a measure of MBF, and fine needle mammary biopsies were obtained at different time points during lactation and by the end of a 14-d bovine somatotropin (BST) treatment initiated 3 months post partum. In mammary sections, CA activity was determined histochemically and alveolar and capillary structures by image analyses upon azure blue staining. In early lactation, alveoli were large and surrounded by many small capillaries with high CA activity. As lactation progressed, capillaries almost tripled in size, whereas number of capillaries surrounding each alveolus decreased by 1/3, and CA activity more than halved. BST treatment did not affect capillary traits but increased number of alveoli in mammary sections, and BST thus appeared to be targeted mostly towards the mammary epithelial cell. Milk vein blood velocity decreased over the course of lactation, when capillary area markedly increased, suggesting that control of mammary blood perfusion is not at the level of the capillary itself, but at pre- or post-capillary sites. We suggest that the observed changes in capillary diameter and CA activity with progressing lactation contributes to reduce efficiency of nutrient and waste product exchange across the capillary-mammary epithelial cell barrier, and this could be an important factor in regulation of mammary (epithelial cell) metabolic activity and lactation performance.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3