Modelling casein aggregation and curd firming in goats' milk from backscatter of infrared light

Author:

Castillo Manuel Z,Payne Fred A,Hicks Clair L,Laencina José S,López María-Belén M

Abstract

A kinetic model was proposed for describing the curd assembly of skimmed goats' milk during enzymic coagulation. The enzymic coagulation of milk was monitored using an optical sensor that measured diffuse reflectance (light backscatter) at 880 nm. The appearance of a shoulder, at low temperatures and protein concentrations, in the diffuse reflectance ratio profile after the inflection point of the curve (Tmax) appeared to separate the aggregation and curd firming steps. The diffuse reflectance ratio profile after Tmax was attributed to the overlapping of casein micelles aggregation and curd firming reactions. The developed kinetic model combined a second order reaction model to describe aggregation reactions and a first order reaction model to describe firming processes reactions. A completely randomised block design with three replications was used to determine the effect of protein concentration and temperature on kinetic constants. Milk was adjusted to three levels of protein (30, 50 and 70 g/kg), and coagulated at five temperatures (20, 25, 30, 35 and 40°C) to test a wide range of processing conditions. Data points from each profile after Tmax were fitted to the proposed model using non-linear regression. The average R2 and standard error of prediction (SEP) for 45 tests conducted were in the range of 0·9975±0·0027 and 0·0081±0·0037, respectively. A significant increase in characteristic times for aggregation (τ2) and curd firming processes (τ1) were found when temperature decreased or protein increased. Theoretical asymptotic value of reflectance ratio, R, increased with increasing level of protein and temperature (P<0·05). The parameter β1, which represented the fraction of diffuse reflectance ratio attributed to aggregation, decreased with increasing temperature and decreasing protein.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3