Investigation on the effectiveness of mid-infrared spectroscopy to predict detailed mineral composition of bulk milk

Author:

Malacarne Massimo,Visentin Giulio,Summer Andrea,Cassandro Martino,Penasa Mauro,Bolzoni Giuseppe,Zanardi Giorgio,De Marchi Massimo

Abstract

This Research Communication investigated the potential of mid-infrared spectroscopy to predict detailed mineral composition of bovine milk. A total of 153 bulk milk samples were analysed for contents of Ca, Cl, Cu, Fe, K, Mg, Na, P and Zn. Also, soluble and colloidal fractions of Ca, Mg and P were quantified. For each milk sample the mid-infrared spectrum was captured and stored. Prediction models were developed using partial least squares regression and the accuracy of prediction was evaluated using both cross- and external validation. The proportion of variance explained by the prediction models in cross-validation ranged from 34% (Na) to 77% (total P), and it ranged from 13% (soluble Mg) to 54% (Cl) in external validation. The ratio of the standard deviation of each trait to the standard error of prediction in external validation, which is an indicator of the practical utility of the prediction model, was low and never greater than 2. Results from the current study supported the limited usefulness of mid-infrared spectroscopy to predict minerals present in low concentration in bulk milk. For major mineral components, results from the present research did not match previous findings demonstrating the need for further studies using larger reference datasets.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology,General Medicine,Food Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3