Comparison of nonlinear functions to describe lactation curves for cumulative milk production in buffalo

Author:

Darmani Kuhi Hassan,López Secundino,Ghavi Hossein-Zadeh Navid,France James

Abstract

AbstractThe aim of this study was to examine the suitability of different growth functions (linear, sinusoidal, Gompertz, Schumacher and Richards) to fit cumulative milk production data from buffalo cows. Cumulative milk production at each day in milk was calculated from two published datasets reporting (i) fortnightly test-day milk yield records of the first lactation of Murrah buffalo that had calved during 1977–2012 and (ii) the first lactation records of Jaffarabadi buffalo collected from history-cum-pedigree registers for each quinquennium between 1991 and 2010. Each function was fitted to the lactation curves using nonlinear regression procedures. The Richards and sinusoidal equations provided the smallest root mean square error values, Akaike's and Bayesian information criteria and, therefore, the best fit for the cumulative lactation curves for milk yield. The Richards equation appeared to provide the most accurate estimate of the cumulative milk production at peak milk yield. Sinusoidal and flexible classical growth functions are appropriate to describe cumulative milk production curves and estimate lactation traits in buffalo.

Publisher

Cambridge University Press (CUP)

Reference35 articles.

1. A sinusoidal equation as alternative to conventional growth functions to describe the evolution of growth in quail;Darmani Kuhi;Spanish Journal of Agricultural Research,2019a

2. Lactation curve and persistency of Anatolian buffaloes;Şahin;Italian Journal of Animal Science,2015

3. A comprehensive review on the composition and properties of buffalo milk;Abd El-Salam;Dairy Science and Technology,2011

4. Current trends in buffalo milk production;Zicarelli;Journal of Buffalo Science,2020

5. Lactation curve and milk flow;Borghese;Buffalo Bulletin,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3