Thermal impact of Heinrich stadials in cave temperature and speleothem oxygen isotope records

Author:

Domínguez-Villar David,Krklec Kristina,López-Sáez José Antonio,Sierro Francisco J.

Abstract

Abstract During each Heinrich stadial (HS), temperatures in southern Europe typically dropped several degrees during several hundred to few thousand years. We have developed a one-dimensional thermal conduction model that transfers the typical surface temperature anomaly of a HS to a series of hypothetical underlying caves. The results show that with increasing depth, the thermal anomaly is attenuated, the lag time increases, and the signal structure experiences larger modifications. The model suggests that in most cases, it is not acceptable to assume a synchronous thermal variability and similar average temperature values between the surface atmosphere and the cave interior at millennial timescales. We also simulated the thermal impact of the modeled HS on speleothem δ18O records. The outputs of most model scenarios suggest that temperature changes associated with the HS produce δ18O anomalies capable of contributing significantly or even decisively to the speleothem isotope variability. Therefore, despite controls other than temperature often being considered more important when interpreting Pleistocene speleothem δ18O records in temperate climates, this research suggests that temperature is expected to be one of the major controls of δ18O values in most cave sites outside the tropics and should be included as a significant parameter affecting Pleistocene speleothem δ18O records.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3