Causes and implications of Mid- to Late Holocene relative sea-level change in the Gulf of Kachchh, western India

Author:

Sharma ShubhraORCID,Chauhan Gaurav,Shukla Anil Dutt,Nambiar Romi,Bhushan Ravi,Desai Bhawanisingh G.,Pandey Shilpa,Dabhi Madhavi,Bhandari Subhash,Bhosale Suraj,Lakhote Abhishek,Juyal Navin

Abstract

AbstractThe relict intertidal deposits from the Kharod River Estuary, Gulf of Kachchh, and the distal end of Kori Creek are used to infer the Mid- to Late Holocene relative sea-level (RSL) change in western India. Employing sedimentology, geochemistry, palynology, ichnology, and optical and radiocarbon dating, the study suggests the dominance of fluvial activity between 16.5 ± 1.6 and 9.9 ± 0.7 ka. After ~7 ka (7.3 ± 0.4, 6.8 ± 0.5 ka), the sea level showed a positive tendency until 4.7 ± 0.2 ka. The tectonically corrected Mid-Holocene RSL change is estimated as 1.45 ± 0.33 m between ~7 and ~5 ka. The study suggests that the Mid-Holocene RSL high was due to the meltwater contribution from the Himalayan cryosphere, with subordinate contribution from glacio-isostatic adjustment and crustal subsidence. The Late Holocene tectonically corrected RSL change at ~1 ka (1.1 ± 0.1 ka and 1045 ± 175 cal yr BP) is estimated as 0.53 ± 0.43 m. This is ascribed to monsoon wind-driven tidal ingression that might have affected the tidal amplitude positively. The study suggests that the Mid-Holocene RSL change did not play a deterministic role in the abandonment of the Harappan coastal settlements.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Reference164 articles.

1. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years

2. Quaternary geology of the arid zone of Kachchh: Terra incognita;Maurya;Proceedings of the Indian National Science Academy,2003

3. The great Rann of Kachchh: perceptions of a field geologist;Merh;Journal of the Geological Society of India,2005

4. Modeling fluvial erosion and deposition on continental shelves during sea level cycles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3