Tractography in the Study of the Human Brain: A Neurosurgical Perspective

Author:

Fortin David,Aubin-Lemay Camille,Boré Arnaud,Girard Gabriel,Houde Jean-Christophe,Whittingstall Kevin,Descoteaux Maxime

Abstract

Background:The brain functions as an integrated multi-networked organ. Complex neurocognitive functions are not attributed to a single brain area but depend on the dynamic interactions of distributed brain areas operating in large-scale networks. This is especially important in the field of neurosurgery where intervention within a spatially localized area may indirectly lead to unwanted effects on distant areas. As part of a preliminary integrated work on functional connectivity, we present our initial work on diffusion tensor imaging tractography to produce in vivo white matter tracts dissection.Methods:Diffusion weighted data and high-resolution T1-weighted images were acquired from a healthy right-handed volunteer (25 years old) on a whole-body 3 T scanner. Two approaches were used to dissect the tractography results: 1) a standard region of interest technique and 2) the use of Brodmann's area as seeding points, which represents an innovation in terms of seeds initiation.Results:Results are presented as tri-dimensional tractography images. The uncinate fasciculus, the inferior longitudinal fasciculus, the inferior fronto-occipital fasiculus, the corticospinal tract, the corpus callosum, the cingulum, and the optic radiations where studied by conventional seeding approach, while Broca's and Wernicke's areas, the primary motor as well as the primary visual cortices were used as seeding areas in the second approach.Conclusions:We report state-of-the-art tractography results of some of the major white matter bundles in a normal subject using DTI. Moreover, we used Brodmann's area as seeding areas for fiber tracts to study the connectivity of known major functional cortical areas.

Publisher

Cambridge University Press (CUP)

Subject

Neurology (clinical),Neurology,General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3