Calmodulin-Dependent Cyclic Nucleotide Phosphodiesterase in Human Cerebral Cortex and Glioblastoma Multiforme

Author:

Lal Sumeer,Raju Rajala V.S.,Macaulay Robert J.B.,Sharma Rajendra K.

Abstract

AbstractBackground: Calmodulin-dependent cyclic nucleotide phosphodiesterase (CaMPDE) has been extensively studied and characterized in normal mammalian tissues; however very little is known about this enzyme in human brain tumors. It has been established that high levels of this enzyme exist in non-central nervous system tumors, PDE inhibitors or cAMP analogues have been used to treat them. This study has examined the levels of CaMPDE in glioblastoma multiforme from six patients and has compared these to the levels of CaMPDE in four patients with normal cerebral tissue. In addition, an enzyme immune assay method (EIA) was developed in this study for the detection of CaMPDE in human cerebral tissue. This method is proposed to be used as an adjunct to the spectrophotometric method presently utilized. This would be beneficial in cases where small tissue samples, for example in stereotactic biopsy, are available. Methods: The CaMPDE activity and corresponding levels of expression in cerebral tissue from temporal lobectomies and both surgical extraction or stereotactic biopsy in patients with primary tumors were determined by spectophotometric and EIA, respectively. The EIA was developed from the production of a polyclonal antibody against bovine brain 60 kDa CaMPDE isozyme. Cross reactivity of the antibody with human was confirmed using transblot and immunohistochemistry. Results: Utilising the EIA, there was found to be significant reduction in both catalytic activity (p < 0.001) and in quantitative protein expression (p < 0.001) in glioblastoma multiforme from patients when compared to normal cerebral cortex. Immunoblotting experiments and immunohistochemistry demonstrated that CaMPDE in glioblastoma multiforme failed to react with a polyclonal antibody raised against bovine brain 60 kDa CaMPDE isozyme, whereas the enzyme from normal tissue reacted with antibody. Conclusions: Contrary to other studies on non-CNS tumors, the catalytic activity and the protein expression of CaMPDE is reduced in glioblastoma multiforme. The EIA method is a more sensitive in detecting CaMPDE than in the spectrophotometric method, especially when a small amount of tissue is available. Immunohistochemistry and the EIA may be useful in the future to use as markers for other types of brain tumors and not for glioblastoma multiforme as demonstrated.

Publisher

Cambridge University Press (CUP)

Subject

Clinical Neurology,Neurology,General Medicine

Reference47 articles.

1. Cyclic nucleotide phosphodiesterases;Wells;Adv Cyclic Nucleotide Res,1977

2. Calcium signals and cancer;Whitfield;Clin Rev Oncogenesis,1992

3. The regulation of cell proliferation by calcium and cyclic AMP

4. Phosphorylation and characterization of bovine heart calmodulin-dependent phosphodiesterase

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3