Author:
Peköz Erol,Röllin Adrian,Ross Nathan
Abstract
Abstract
We study the joint degree counts in linear preferential attachment random graphs and find a simple representation for the limit distribution in infinite sequence space. We show weak convergence with respect to the p-norm topology for appropriate p and also provide optimal rates of convergence of the finite-dimensional distributions. The results hold for models with any general initial seed graph and any fixed number of initial outgoing edges per vertex; we generate nontree graphs using both a lumping and a sequential rule. Convergence of the order statistics and optimal rates of convergence to the maximum of the degrees is also established.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献