Author:
Pedarsani Ramtin,Walrand Jean,Zhong Yuan
Abstract
Abstract
Modern processing networks often consist of heterogeneous servers with widely varying capabilities, and process job flows with complex structure and requirements. A major challenge in designing efficient scheduling policies in these networks is the lack of reliable estimates of system parameters, and an attractive approach for addressing this challenge is to design robust policies, i.e. policies that do not use system parameters such as arrival and/or service rates for making scheduling decisions. In this paper we propose a general framework for the design of robust policies. The main technical novelty is the use of a stochastic gradient projection method that reacts to queue-length changes in order to find a balanced allocation of service resources to incoming tasks. We illustrate our approach on two broad classes of processing systems, namely the flexible fork-join networks and the flexible queueing networks, and prove the rate stability of our proposed policies for these networks under nonrestrictive assumptions.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献