Convergent evolution in Cladonia gracilis and allies

Author:

FONTAINE Kyle M.,AHTI Teuvo,PIERCEY-NORMORE Michele D.

Abstract

AbstractMembers of the Cladonia gracilis group of lichen fungi are common terrestrial lichens where morphological features are more similar between members of the C. gracilis species complex and allied species outside the complex than they are between subspecies within the complex. The objectives of this study were to examine whether the Cladonia gracilis species complex is monophyletic, to determine whether morphological similarity is supported by genetic variation, and to examine the utility of the polyketide synthase (PKS) gene for phylogenetic studies among closely related species. Two loci, the ketosynthase region of the PKS gene and the internal transcribed spacer (ITS) region of nuclear ribosomal DNA, were sequenced and analysed by Maximum Parsimony, Bayesian and haplotype network analyses. Functional differences were also inferred through ITS2 RNA secondary structures and non-synonymous changes in translated PKS amino acid sequences. The monophyly of the C. gracilis complex is supported by 71% bootstrap in the ITS phylogeny, and 92% bootstrap with greater than 95% posterior probability in the PKS phylogeny. Morphological similarity is not always supported by genetic similarity. The PKS gene is less variable than the ITS but the PKS supports species hypotheses that are reflected in the ITS2 RNA model. We conclude that monophyly of the C. gracilis complex can be supported if C. cornuta, C. coniocraea and C. ochrochlora are included in the complex. In addition, C. maxima, C. phyllophora and C. subchordalis are supported as monophyletic species outside the C. gracilis complex. Cladonia maxima may form a separate species and variation among podetial morphology may be explained by convergent evolution.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3