Lichen elements as pollution indicators: evaluation of methods for large monitoring programmes

Author:

WILL-WOLF Susan,JOVAN Sarah,AMACHER Michael C.

Abstract

AbstractLichen element content is a reliable indicator for relative air pollution load in research and monitoring programmes requiring both efficiency and representation of many sites. We tested the value of costly rigorous field and handling protocols for sample element analysis using five lichen species. No relaxation of rigour was supported; four relaxed protocols generated data significantly different from rigorous protocols for many of the 20 validated elements. Minimally restrictive site selection criteria gave quality data from 86% of 81 permanent plots in northern Midwest USA; more restrictive criteria would likely reduce indicator reliability. Use of trained non-specialist field collectors was supported when target species choice considers the lichen community context. Evernia mesomorpha, Flavoparmelia caperata and Physcia aipolia/stellaris were successful target species. Non-specialists were less successful at distinguishing Parmelia sulcata and Punctelia rudecta from lookalikes, leading to few samples and some poor quality data.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

Reference32 articles.

1. Biological Monitoring of Heavy Metal Pollution

2. Bioindication: The Community Approach

3. SPSS (2015) IBM SPSS Statistics. Release 23.0.0.0. 1989–2015.

4. United States Environmental Protection Agency (US EPA) (2016) Air data: air quality data collected at outdoor monitors across the US. Available at: https://www.epa.gov/outdoor-air-quality-data (Accessed November 2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3