Respiratory medium and circulatory anatomy constrain size evolution in marine macrofauna

Author:

Heim Noel A.ORCID,Bakshi Saket H.,Buu Loc,Chen Stephanie,Heh Shannon,Jain Ashli,Noll Christopher,Patkar Ameya,Rizk Noah,Sundararajan Sriram,Villante Isabella,Knope Matthew L.,Payne Jonathan L.ORCID

Abstract

AbstractThe typical marine animal has increased in biovolume by more than two orders of magnitude since the beginning of the Cambrian, but the causes of this trend remain unknown. We test the hypothesis that the efficiency of intra-organism oxygen delivery is a major constraint on body-size evolution in marine animals. To test this hypothesis, we compiled a dataset comprising 13,723 marine animal genera spanning the Phanerozoic. We coded each genus according to its respiratory medium, circulatory anatomy, and feeding mode. In extant genera, we find that respiratory medium and circulatory anatomy explain more of the difference in size than feeding modes. Likewise, we find that most of the Phanerozoic increase in mean biovolume is accounted for by size increase in taxa that accomplish oxygen delivery through closed circulatory systems. During the Cambrian, water-breathing animals with closed circulatory systems were smaller, on average, than contemporaries with open circulatory systems. However, genera with closed circulatory systems superseded in size genera with open circulatory systems by the Middle Ordovician, as part of their Phanerozoic-long trend of increasing size. In a regression analysis, respiratory and circulatory anatomy explain far more size variation in the living fauna than do feeding modes, even after accounting for taxonomic affinity at the class level. These findings suggest that ecological and environmental drivers of the Phanerozoic increase in the mean size of marine animals operated within strong, anatomically determined constraints.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3