Surrogate rearing a keystone species to enhance population and ecosystem restoration

Author:

Mayer Karl A.,Tinker M. TimORCID,Nicholson Teri E.ORCID,Murray Michael J.,Johnson Andrew B.,Staedler Michelle M.,Fujii Jessica A.ORCID,Van Houtan Kyle S.ORCID

Abstract

AbstractTranslocation and rehabilitation programmes are critical tools for wildlife conservation. These methods achieve greater impact when integrated in a combined strategy for enhancing population or ecosystem restoration. During 2002–2016 we reared 37 orphaned southern sea otter Enhydra lutris nereis pups, using captive sea otters as surrogate mothers, then released them into a degraded coastal estuary. As a keystone species, observed increases in the local sea otter population unsurprisingly brought many ecosystem benefits. The role that surrogate-reared otters played in this success story, however, remained uncertain. To resolve this, we developed an individual-based model of the local population using surveyed individual fates (survival and reproduction) of surrogate-reared and wild-captured otters, and modelled estimates of immigration. Estimates derived from a decade of population monitoring indicated that surrogate-reared and wild sea otters had similar reproductive and survival rates. This was true for males and females, across all ages (1–13 years) and locations evaluated. The model simulations indicated that reconstructed counts of the wild population are best explained by surrogate-reared otters combined with low levels of unassisted immigration. In addition, the model shows that 55% of observed population growth over this period is attributable to surrogate-reared otters and their wild progeny. Together, our results indicate that the integration of surrogacy methods and reintroduction of juvenile sea otters helped establish a biologically successful population and restore a once-impaired ecosystem.

Publisher

Cambridge University Press (CUP)

Subject

Nature and Landscape Conservation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3