Will reconnecting ecosystems allow long-distance mammal migrations to resume? A case study of a zebra Equus burchelli migration in Botswana

Author:

Bartlam-Brooks H.L.A.,Bonyongo M.C.,Harris Stephen

Abstract

AbstractTerrestrial wildlife migrations, once common, are now rare because of ecosystem fragmentation and uncontrolled hunting. Botswana historically contained migratory populations of many species but habitat fragmentation, especially by fences, has decreased the number and size of many of these populations. During a study investigating herbivore movement patterns in north-west Botswana we recorded a long-distance zebra Equus burchelli antiquorum migration between the Okavango Delta and Makgadikgadi grasslands, a round-trip distance of 588 km; 55% of 11 animals collared in the south-eastern peripheral delta made this journey. This was unexpected as, between 1968 and 2004, the migration could not have followed its present course because of the bisection of the route by a veterinary cordon fence. As little evidence exists to suggest that large-scale movements by medium-sized herbivores can be restored, it is of significant interest that this migration was established to the present highly directed route within 4 years of the fence being removed. The success of wildlife corridors, currently being advocated as the best way to re-establish ecosystem connectivity, relies on animals utilizing novel areas by moving between the connected areas. Our findings suggest that medium-sized herbivores may be able to re-establish migrations relatively quickly once physical barriers have been removed and that the success of future system linkages could be increased by utilizing past migratory routes.

Publisher

Cambridge University Press (CUP)

Subject

Nature and Landscape Conservation,Ecology, Evolution, Behavior and Systematics

Reference38 articles.

1. Die Spätauflassung ostpreussischer Jungstörche in Westdeutschland durch die Vogelwarte Rossitten 1933;Schüz;Vogelwarte,1949

2. Food limitation and demography of a migratory antelope, the white-eared kob

3. Water flow dynamics in the Okavango River Basin and Delta––a prerequisite for the ecosystems of the Delta

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3