Identifying and minimising the impact of fake visual media: Current and future directions

Author:

Nightingale Sophie J.ORCID,Wade Kimberley A.ORCID

Abstract

Abstract Over the past two decades, society has seen incredible advances in digital technology, resulting in the wide availability of cheap and easy-to-use software for creating highly sophisticated fake visual content. This democratisation of creating such content, paired with the ease of sharing it via social media, means that ill-intended fake images and videos pose a significant threat to society. To minimise this threat, it is necessary to be able to distinguish between real and fake content; to date, however, human perceptual research indicates that people have an extremely limited ability to do so. Generally, computational techniques fair better in these tasks, yet remain imperfect. What's more, this challenge is best considered as an arms race – as scientists improve detection techniques, fraudsters find novel ways to deceive. We believe that it is crucial to continue to raise awareness of the visual forgeries afforded by new technology and to examine both human and computational ability to sort the real from the fake. In this article, we outline three considerations for how society deals with future technological developments that aim to help secure the benefits of that technology while minimising its possible threats. We hope these considerations will encourage interdisciplinary discussion and collaboration that ultimately goes some way to limit the proliferation of harmful content and help to restore trust online.

Publisher

Cambridge University Press (CUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of ResNet50, and VGG16 Architectures for Counterfeit Logo Identification;Lecture Notes on Data Engineering and Communications Technologies;2024

2. Synthetic Heritage: Online platforms, deceptive genealogy and the ethics of algorithmically generated memory;Memory, Mind & Media;2024

3. GPT-4 versus Bard and Bing: LLMs for Fake Image Detection;2023 3rd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA);2023-12-13

4. Editorial 1: Journeys, cases and conversations: An introduction to Memory, Mind & Media;Memory, Mind & Media;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3