Comparison of three antioxidants in chemical and biological assays on porcine oocytes during ageing in vitro

Author:

Park Chan-Oh,Lee Seung-Eun,Yoon Jae-Wook,Park Hyo-Jin,Kim So-Hee,Oh Seung-Hwan,Lee Do-Geon,Pyeon Da-Bin,Kim Eun-Young,Park Se-PillORCID

Abstract

SummaryOur previous studies have already revealed that β-cryptoxanthin (BCX), hesperetin (HES), and icariin (ICA) antioxidants are effective for in vitro maturation (IVM) of porcine oocytes. In this study, we investigated which of BCX, HES, or ICA was more effective for IVM of porcine oocytes. The antioxidant properties were assessed with aged porcine oocytes and embryos by comparing 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), reducing power, and H2O2 scavenging activity assays. The chemical assay results demonstrated that BCX had a greater DPPH scavenging activity and reducing power than HES and ICA, compared with controls. However, the H2O2 scavenging activity of the antioxidants was similar when tested at the optimal concentrations of 1 μM BCX (BCX-1), 100 μM HES (HES-100), and 5 μM ICA (ICA-5). The biological assay results showed that BCX-1 treatment was more effective in inducing a significant reduction in reactive oxygen species (ROS), improving glutathione levels, and increasing the expression of antioxidant genes. In addition, BCX-1 inhibited apoptosis by increasing the expression of anti-apoptotic genes and decreasing pro-apoptotic genes in porcine parthenogenetic blastocysts. BCX-1 also significantly increased the blastocyst formation rate compared with the ageing control group, HES-100 and ICA-5. This study demonstrates that damage from ROS produced during oocyte ageing can be prevented by supplementing antioxidants into the IVM medium, and BCX may be a potential candidate to improve assisted reproductive technologies.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3