Optimal doses of EGF and GDNF act as biological response modifiers to improve porcine oocyte maturation and quality

Author:

Valleh Mehdi Vafaye,Zandi Nahid Karimi,Rasmussen Mikkel Aabech,Hyttel Poul

Abstract

SummaryIt is well documented that both epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) are critical for porcine oocyte maturation, however, little information is known about their mechanism of action in vitro. To gain insight into the mechanisms of action of the optimum doses of EGF and GDNF on porcine oocyte maturation, porcine cumulus–oocyte complexes (COCs) were matured in defined porcine oocyte medium supplemented with EGF, GDNF or a combination of both at varying concentrations (0–100 ng/ml) for 44 h. Nuclear and cytoplasmic maturation were determined in terms of nuclear stage after DNA staining with Hoechst and cortical granule distribution after lectin labeling, respectively. Mature oocytes were subsequently collected for gene expression analysis or subjected to in vitro fertilization and cultured for 7 days. The results showed that EGF and/or GDNF, when administered in a certain dose (50 ng/μl) to the maturation medium, not only effectively improved the synchronization of nuclear and cytoplasmic maturation processes within the oocyte, but enhanced expression of their corresponding receptors in mature oocytes (P < 0.05). Moreover, supplementation with an optimal combination of EGF + GDNF resulted in elevation of TFAM transcripts as well as a decrease of caspase-3 transcripts compared with the other studied groups (P < 0.05). Collectively, our results indicate that treatment of porcine oocytes with specific-dose combinations of EGF and GDNF stimulates oocyte quality and competence by transcriptional modulation of genes involved in oocyte survival and competence.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3