Oocyte maturation in rabbits: effects of calmodulin inhibitors

Author:

Henry Michael A.,Rawlins Richard G.,Radwanska Ewa,Fahy Mary M.

Abstract

SummaryOocyte maturation in mammals follows a highly conserved pattern of release from arrest through to the extrusion of the first polar body and formation of the second metaphase spindle. Oscillations in cytoplasmic calcium concentration precede the events of maturation in many species. These calcium ions interact with and activate calcium-binding proteins, including calmodulin, within the cell. Thus, it was of interest to us to examine whether calcium acted through calmodulin in the initial stages of maturation in rabbit oocytes or whether calmodulin was required for continuation through metaphase I on to metaphase II. Using the calmodulin inhibitor W-7 we found a significant (p< 0.05) decrease in the percentage of oocytes that underwent germinal vesicle breakdown. Calmidazolium did not prevent germinal vesicle breakdown; however, it caused a significant (p< 0.05) decrease in the proportion of oocytes with fully elaborated spindles and taxol-induced cytoplasmic asters. Both inhibitors caused a significant (p< 0.05) reduction in the proportion of oocytes that extruded their first polar bodies. The kinase inhibitor 6-DMAP caused a significant reduction in the proportion of oocytes with spindles and condensed chromatin, indicating the necessity for phosphorylation events in the resumption of meiosis. In rabbit oocytes calmodulin may play a role in the release from prophase arrest, and it is necessary for spindle preservation and continuation through metaphase I to metaphase II. The varying effects of the two inhibitor stems from their different binding sites on the calmodulin molecule thus causing a differential effect on its downstream effectors.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3