Distribution of tubulointerstitial nephritis antigen-like 1 and structural matrix proteins in mouse embryos during preimplantation developmentin vivoandin vitro

Author:

Sakurai Masahiro,Sato Yusuke,Mukai Kuniaki,Suematsu Makoto,Fukui Emiko,Yoshizawa Midori,Tanemura Kentaro,Hoshino Yumi,Matsumoto Hiromichi,Sato Eimei

Abstract

SummaryTubulointerstitial nephritis antigen-like 1 (TINAGL1) is a novel matricellular protein that interacts with structural matrix proteins and promotes cell adhesion and spreading. We have previously reported unique localization of TINAGL1 to the trophectoderm (TE) of mouse blastocysts. TINAGL1 was found to be upregulated in implantation-competent blastocysts after estrogen treatment using progesterone-treated delayed-implantation models. Moreover, colocalization of TINAGL1 and extracellular matrix (ECM) protein laminin 1 was detected in the Reichert membrane on embryonic days 6.5 and 7.5. Although these data suggested a role for TINAGL1 in the embryo development at postimplantation, its relevance to other ECM proteins during preimplantation development is not clear. In this study, we examined the expression of TINAGL1 and its relevance to other ECM proteins fibronectin (FN) and collagen type IV (ColIV) duringin vivodevelopment of preimplantation embryos, particularly at blastocyst stage in detail. Localizations of TINAGL1, FN, and ColIV were similar. In 1-cell to 8-cell embryos, they were expressed in cytoplasm of blastomeres, and in morulae they were localized in the outer cells. FN and ColIV were expressed primarily on outer surface of the cells. In blastocysts, FN and ColIV were distributed in the cytoplasm of TE, but, just prior to implantation, they became localized uniquely to the blastocoelic surface of TE. Inin vitrofertilized (IVF) blastocysts, expression levels of TINAGL1 and FN were lower than inin vivoblastocysts. These results suggest that, during preimplantation development, TINAGL1 may be involved in roles of structural matrix proteins, whose expression in blastocysts may be affected byin vitroculture.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3