Okadaic acid-sensitive phosphatase is related to MII/G1 transition in mouse oocytes

Author:

Moride Naoko,Kuwahara Akira,Sutoh Ayako,Tanaka Yu,Mukai Yukari,Yamashita Mizuho,Matsuzaki Toshiya,Yasui Toshiyuki,Irahara Minoru

Abstract

SummaryIt is reported that okadaic acid (OA)-sensitive phosphatase is related to mitogen-activated protein kinase (MAPK)/p90rsk activation in mammalian oocytes. OA is also involved in the positive feedback loop between M phase-promoting factor (MPF) and cdc25c inXenopusoocytes during meiotic maturation. However, the effect of phosphatase inhibition by OA on MPF and MAPK activities at the MII/G1 in oocytes remains unknown. The aim of this study is to clarify the relationship between OA-sensitive phosphatase and mitosis MII/G1 transition in mouse oocytes. MII-arrested oocytes were, isolated from mice, inseminated and cultured in TYH medium (control group) or TYH medium supplemented with 2.5 μM of OA (OA group). Histone H1 kinase and myelin basic protein (MBP) kinase activities were measured as indicators of MPF and p42 MAPK activities after insemination. Phosphorylation of cdc25c after insemination was analized in OA and control group by western blotting. Seven hours after insemination a pronucleus (PN) was formed in 84.1% (69/85) of oocytes in the control group. However, no PN was formed in oocytes of the OA group (p< 0.001). Although MPF and MAPK activities in the control group significantly decreased at 3, 4, 5, and 7 h after insemination, these decreases were significantly inhibited by OA addition (p< 0.05). Furthermore, OA addition prevented cdc25c dephosphorylation 7 h after insemination. In conclusion, OA-sensitive phosphatase correlates with inactivation of MPF and MAPK, and with the dephosphorylation of cdc25c at the MII/G1 transition in mouse oocytes.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3