Human cumulus cell complexes studied in vitro by light microscopy and scanning electron microscopy

Author:

Kennedy Sian,England Marjorie A.,Mills Carla

Abstract

SummaryVarious researchers describe the morphology of cumulus cells (CC) in vitro, but few have investigated their behaviour on plastic. Knowledge concerning the behaviour of human CC could be useful in improving the success of in vitro fertilisation procedures. This study aimed to describe the morphology and behaviour of CC in vitro and to investigate movement on a collagen-coated substrate. Following collection some cumulus were mechanically dissected from those surrounding the oocyte. Cumulus aggregates were cultured over 24 h using Earle's medium supplemented with 8% albumin. Substrata were plastic coverslips coated with collagens I, IV, or mixed collagens. Cumulus cultured over corresponding time periods on uncoated coverslips served as controls. Specimens were fixed and prepared for scanning electron microscopy. Over 24 h the controls began exhibiting the morphological features associated with cell movement: cell surface protrusions changed from blebs to microridges, lamellipodia and leading lamellae; cell shape altered from rounded and upright, to flattened. Extracellularmatrix (ECM) transformed from a thick, sheet-like substance to a thin, fibrous material. By 24 h, cells contacting ECM remained rounded showing few features of movement. Collagens enhanced attachment of CC as a monolayer on the substrate. Cell morphology varied according to the collagen type used. On mixed collagens, cells attached rapidly, appearing to be predominantly non-motile. On collagen type I there was less attachment of cells but increased motility. On collagen type IV there was decreased attachment and the cells remained spherical. In conclusion, collagens enhance the settling of cumulus cells on a plastic substrate and the cells exhibit some specificity in attaching to collagens.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3