Author:
Guo Jitong,Liu Fengjun,Guo Zekun,Li Yu,An Zhixing,Li Xuefeng,Li Yuqiang,Zhang Yong
Abstract
SummaryOocyte activation is an essential step in animal cloning to allow subsequent development of the reconstructed embryos. A special activation protocol is required for different animal species. The present study investigated low temperature, electrical pulses, ethanol, ionomycin and strontium for goat oocyte activation in order to optimize the protocols. We found, as a result, effective activation and parthenogenetic development of goat oocytes that had been derived from ionomycin, strontium and electrical pulse groups. Within each group 79.3–81.6%, 2.2–78.8% and 65.5% of the oocytes cleaved and 16.2–24.8%, 0–15.6% and 11.1% of the cleaved embryos developed into blastocysts when the oocytes were activated by ionomycin combined with 6-dimethylaminopurine, strontium plus cytochalasin B and electrical pulses combined with cytochalasin B, respectively. However, low temperature and ethanol were both unable to activate goat oocytes under our experimental conditions. When ionomycin combined with 6-dimethylaminopurine and strontium plus cytochalasin B was applied to activate somatic cell nuclear transfer embryos derived from cultured cumulus, 51.0% and 72.5% of the embryos cleaved, respectively. After transfer of 4-cell embryos into recipients, one (1/19 and 1/7) of the recipients from each group was found to be pregnant as detected by ultrasound, but both of these recipients lost the embryos between 45 and 60 days of pregnancy.
Publisher
Cambridge University Press (CUP)
Subject
Cell Biology,Developmental Biology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献