Modulating oxidative stress and epigenetic homeostasis in preimplantation IVF embryos

Author:

Menezo YvesORCID,Clement Patrice,Dale BrianORCID,Elder Kay

Abstract

Summary Assisted reproductive technology is today considered a safe and reliable medical intervention, with healthy live births a reality for many IVF and ICSI treatment cycles. However, there are increasing numbers of published reports describing epigenetic/imprinting anomalies in children born as a result of these procedures. These anomalies have been attributed to methylation errors in embryo chromatin remodelling during in vitro culture. Here we re-visit three concepts: (1) the so-called ‘in vitro toxicity’ of ‘essential amino acids’ before the maternal to zygotic transition period; (2) the effect of hyperstimulation (controlled ovarian hyperstimulation) on homocysteine in the oocyte environment and the effect on methylation in the absence of essential amino acids; and (3) the fact/postulate that during the early stages of development the embryo undergoes a ‘global’ demethylation. Methylation processes require efficient protection against oxidative stress, which jeopardizes the correct acquisition of methylation marks as well as subsequent methylation maintenance. The universal precursor of methylation [by S-adenosyl methionine (SAM)], methionine, ‘an essential amino acid’, should be present in the culture. Polyamines, regulators of methylation, require SAM and arginine for their syntheses. Cystine, another ‘semi-essential amino acid’, is the precursor of the universal protective antioxidant molecule: glutathione. It protects methylation marks against some undue DNA demethylation processes through ten-eleven translocation (TET), after formation of hydroxymethyl cytosine. Early embryos are unable to convert homocysteine to cysteine as the cystathionine β-synthase pathway is not active. In this way, cysteine is a ‘real essential amino acid’. Most IVF culture medium do not maintain methylation/epigenetic processes, even in mouse assays. Essential amino acids should be present in human IVF medium to maintain adequate epigenetic marking in preimplantation embryos. Furthermore, morphological and morphometric data need to be re-evaluated, taking into account the basic biochemical processes involved in early life.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3