Influence of oocyte selection, activation with a zinc chelator and inhibition of histone deacetylases on cloned porcine embryo and chemically activated oocytes development

Author:

Ongaratto Felipe L.ORCID,Rodriguez-Villamil Paula,Bertolini Marcelo,Carlson Daniel F.

Abstract

SummaryThe aim of this study was to evaluate the effects of alternative protocols to improve oocyte selection, embryo activation and genomic reprogramming on in vitro development of porcine embryos cloned by somatic cell nuclear transfer (SCNT). In Experiment 1, in vitro-matured oocytes were selected by exposure to a hyperosmotic sucrose solution prior to micromanipulation. In Experiment 2, an alternative chemical activation protocol using a zinc chelator as an adjuvant (ionomycin + N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) + N-6-dimethylaminopurine (6-DMAP)) was compared with a standard protocol (ionomycin + 6-DMAP) for the activation of porcine oocytes or SCNT embryos. In Experiment 3, presumptive cloned zygotes were incubated after chemical activation in a histone deacetylase inhibitor (Scriptaid) for 15 h, with the evaluation of embryo yield and total cell number in day 7 blastocysts. In Experiment 1, cleavage rates tended to be higher in sucrose-treated oocytes than controls (123/199, 61.8% vs. 119/222, 53.6%, respectively); however, blastocyst rates were similar between groups. In Experiment 2, cleavage rates were higher in zygotes treated with TPEN than controls but no difference in blastocyst rates between groups occurred. For Experiment 3, the exposure to Scriptaid did not improve embryo development after cloning. Nevertheless, the total number of cells was higher in cloned zygotes treated with Scriptaid than SCNT controls. In conclusion, oocyte selection by sucrose as well as treatments with zinc chelator and an inhibitor of histone deacetylases did not significantly improve blastocyst yield in cloned and parthenotes. However, the histone deacetylases inhibitor produced a significant improvement in the blastocyst quality.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3