Human cumulus cell sensitivity to vitrification, an ultrastructural study

Author:

Taghizabet Neda,Khalili Mohammad Ali,Anbari Fatemeh,Agha-Rahimi Azam,Nottola Stefania Annarita,Macchiarelli Guido,Palmerini Maria GraziaORCID

Abstract

SummaryCumulus cells (CCs) play an important role in the regulation of female gamete development, meiotic maturation, oocyte–sperm interaction, capacitation and acrosome reaction. However, their role in maintaining oocyte competence after vitrification is unclear as controversial data on their protecting action against oocyte cryoinjuries are available. Here we described the effects of vitrification on the ultrastructure of human CCs collected from women undergoing assisted reproductive technologies (ARTs). In total, 50 patches of CCs, sampled from high-quality human cumulus–oocyte complexes, were randomly allocated into two groups after patient informed consent: 1, fresh CCs (controls, n = 25); 2, vitrified CCs (n = 25). Samples were then prepared and observed by transmission electron microscopy. In fresh CCs, in which small cell clusters were visible, cell membranes were joined by focal gap junctions. Microvilli were rare and short. Nuclei, mitochondria, smooth endoplasmic reticulum (SER), Golgi apparatus and lipid droplets appeared well preserved; vacuoles were scarce. After vitrification, we observed two populations of CCs: light CCs, with a smooth appearance and few short microvilli; and dark CCs, with numerous and long microvilli. In both, most of the organelles appeared similar to those of fresh CCs. Lipid droplets were denser and more numerous, with respect to fresh CCs. They were mainly located in the peri-nuclear and sub-plasmalemmal regions. Numerous packed electron-negative vacuoles were visible. The vitrification procedure did not cause alterations in the fine structure of major organelles, except for an increased amount of lipid droplets and vacuoles. This specific sensitivity of human CCs to vitrification should be considered during ARTs.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3