Microplate assay for quantifying developmental morphologies: effects of exogenous hyalin on sea urchin gastrulation

Author:

Razinia Z.,Carroll Jr E.J.,Oppenheimer S.B.

Abstract

SummaryIt is often difficult to determine the effects of various substances on the development of the sea urchin embryo due to the lack of appropriate quantitative microassays. Here, a microplate assay has been developed for quantitatively evaluating the effects of substances, such as hyalin, on living sea urchin embryos. Hyalin (330 kDa) is a major constituent of the sea urchin hyaline layer, an extracellular matrix that develops 20 min postinsemination. Function of the hyaline layer and its major constituent, is the adhesion of cells during morphogenesis. Using wide-mouthed pipette tips, 25 μl of 24-hStrongylocentrotus purpuratusembryos were transferred to each well of a 96-well polystyrene flat-bottom microplate yielding about 12 embryos per well. Specific concentrations of purified hyalin diluted in low calcium seawater were added to the wells containing the embryos, which were then incubated for 24 h at 15 °C. The hyalin-treated and control samples were observed live and after fixation with 10% formaldehyde using a Zeiss Axiolab photomicroscope. The small number of embryos in each well allowed quantification of the developmental effects of the added media. Specific archenteron morphologies—attached, unattached, no invagination and exogastrula—were scored and a dose-dependent response curve was generated. Hyalin at high concentrations blocked invagination. At low concentrations, it inhibited archenteron elongation/attachment to the blastocoel roof. While many studies have implicated hyalin in a variety of interactions during morphogenesis, we are not aware of any past studies that have quantitatively examined the effects of exogenous hyalin on specific gastrulation events in whole embryos.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3