Contrasting effects of the Toll-like receptor 4 in determining ovarian follicle endowment and fertility in female adult mice

Author:

Gonçalves Júlio Panzera,Magalhães Breno AugustoORCID,Campos-Junior Paulo Henrique AlmeidaORCID

Abstract

Abstract Toll-like receptor 4 (TLR4) is best known for its role in bacteria-produced lipopolysaccharide recognition. Regarding female reproduction, TLR4 is expressed by murine cumulus cells and participates in ovulation and in cumulus–oocyte complex (COC) expansion, maternal–fetal interaction and preterm labour. Despite these facts, the role of TLR4 in ovarian physiology is not fully understood. Therefore, the aim of the present study was to investigate the effects of TLR4 genetic ablation on mice folliculogenesis and female fertility, through analysis of reproductive crosses, ovarian responsiveness and follicular quantification in TLR4−/− (n = 94) and C57BL/6 mice [wild type (WT), n = 102]. TLR4-deficient pairs showed a reduced number of pups per litter (P = 0.037) compared with WT. TLR4−/− mice presented more primordial, primary, secondary and antral follicles (P < 0.001), however there was no difference in estrous cyclicity (P > 0.05). A lower (P = 0.006) number of COC was recovered from TLR4−/− mice oviducts after superovulation, and in heterozygous pairs, TLR4−/− females also showed a reduction in the pregnancy rate and in the number of fetuses per uterus (P = 0.007) when compared with WT. Altogether, these data suggest that TLR4 plays a role in the regulation of murine folliculogenesis and in determining ovarian endowment. TLR4 deficiency may affect ovulation and pregnancy rates, potentially decreasing fertility, therefore the potential side effects of its blockade have to be carefully investigated.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3