Advances in the study of zygote activation in higher plants

Author:

Li Dong Xiao,Chen Shi Jun,Tian Hui QiaoORCID

Abstract

SummaryIn higher plants, fertilization induces many structural and physiological changes in the fertilized egg that reflect the transition from the haploid female gamete to the diploid zygote – the first cell of the sporophyte. After fusion of the egg nucleus with the sperm nucleus, many molecular changes occur in the zygote during the process of zygote activation during embryogenesis. The zygote originates from the egg, from which some pre-stored translation initiation factors transfer into the zygote and function during zygote activation. This indicates that the control of zygote activation is pre-set in the egg. After the egg and sperm nuclei fuse, gene expression is activated in the zygote, and paternal and maternal gene expression patterns are displayed. This highlights the diversity of zygotic genome activation in higher plants. In addition to new gene expression in the zygote, some genes show quantitative changes in expression. The asymmetrical division of the zygote produces an apical cell and a basal cell that have different destinies during plant reconstruction; these destinies are determined in the zygote. This review describes significant advances in research on the mechanisms controlling zygote activation in higher plants.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

Reference51 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3