Luteinizing hormone secretion, ovulatory capacity, and oocyte quality in peripubertal Gir heifers

Author:

Oliveira Clara SladeORCID,Rosa Paola Maria da Silva,Alves Bruna Rios CoelhoORCID,Monteiro Clara Ana Santos,Leal Gabriela RamosORCID,Guedes Pedro Henrique Evangelista,Camargo Agostinho Jorge dos Reis,Saraiva Naiara ZoccalORCID

Abstract

SummaryInduction of puberty in cattle breeds that attain puberty in later stages, such as Gir, allows the earlier beginning of reproductive life and it might increase oocyte quality. Here, the ovulatory capacity of prepuberal Gir heifers was studied and its relationship to follicular growth, luteinizing hormone (LH) secretion and oocyte quality was evaluated. Peripubertal Gir heifers were treated with a progesterone-based protocol and according to ovulatory response were separated into groups: not-ovulated (N-OV) and ovulated (OV). Serial blood samples were taken 24 h after estradiol treatment on day 12 to evaluate LH secretion. Cumulus–oocyte complexes (COCs) were collected using ovum pick-up and assessed for brilliant cresyl blue (BCB) staining rate, IVF-grade oocytes rate, and mean oocyte diameter, in comparison with cow oocytes. Gene expression of developmental competence markers (ZAR1, MATER, and IGF2R) was also analyzed. The largest follicle diameters were similar between N-OV and OV groups on the day of estradiol treatment (d12) and the next day and decreased (P = 0.04) in the N-OV group thereafter. LH pulse secretion was different between groups (N-OV = 3.61 ± 0.34 vs OV = 2.83 ± 0.21 ng/ ml; P = 0.04). COC assessment showed that the number of recovered oocytes, BCB+ rate, IVF-grade oocytes and oocyte size was similar (P > 0.05) among groups, resembling adult cow patterns. ZAR1, MATER and IGF2R gene expression in oocytes were also similar (P > 0.05) in N-OV and OV groups. In conclusion, our results demonstrate a lower LH secretion profile in peripubertal Gir heifers prone to ovulate after induction protocol, and that oocyte quality is not affected on a short-term basis by ovulation itself.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3